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Objectives

Plasma-loaded microwave devices have the potential to advance the technological and
scientific base of microwave sources for Air Force applications, and also to have an impact on
commercial and industrial applications through the development of transferable, commercially
viable technologies. The thrust of this research program is to improve the understanding of
physics issues in the operation of the Pasotron, and to exploit this knowledge for improving the
Pasotron’s performance. The Pasotron is a Megawatt-class microwave source capable of
simultaneously producing high power (Megawatts), high efficiency, very low noise and good

frequency stability.

The scientific efforts during this reporting period, July 2007 to April 2008, were focused on:
(a) Experimental studies of spectral control

(b) Theoretical studies- phase locking & ion noise

Status of effort and accomplishments

(a) Experimental studies of spectral control

This effort is focused on experimental studies of the spectral broadening in the pasotron

operating in various regimes:

1) High power (~1MW), high Q operation: Single mode (90% of power is radiated in one mode-
see Fig 1), as well as mode hopping (90% of power is split about equally between 2 modes - see

Fig 2) were demonstrated

2) Medium power (~0.25MW), low Q operation: Spectral broadening (~10%) was demonstrated
in the regime of large voltage droop (see Fig. 3)

These results can be beneficial for ECM and other applications requiring spectral control.
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Figure 1: Single mode operation (18 Turns Shorted Helix, 4cm plasma gun, 3cm
aperture, V=50kV, J=40A, Reflector position = 17cm)
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Figure 2: Mode Hopping (18 Turns Shorted Helix, 4cm plasma gun, 3cm aperture,
V=50kV, J=40A, #4 Reflector position = 15cm)
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Figure 3: Spectral broadening (~10%) by using voltage droop. (Matched 18 turns helix.
1 capacitor, discharge resistor =78 Ohm #2, p = 11 0° Torr, J=125 - 140A, U=46 —
29kV, Uo=57kV)

(b) Theoretical studies

These studies were done along two lines:

1) Phase-locking phenomena in the pasotron oscillator. Such phenomena are important for
the phase control of pasotron outgoing radiation. To analyze the pasotron operation in the
phase-locked regime it was assumed that for stable operation the main cavity of the
pasotron has large end reflections providing rather high Q-factor. It was also assumed
that there is an input cavity separated from the main cavity by the drift tube, and in this
input cavity an electron beam is modulated by the drive signal. Then, prebunched beam
excites oscillations in the main cavity. The locking bandwidth of such oscillations was
calculated. Typical results are shown in Figure 4 where the locking bandwidth
(normalized to the signal frequency) is shown (the locking region is designated by (b) in

the figure) as the function of the bunching parameter proportional to the amplitude of the

drive signal.
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Fig. 4. Locking bandwidth of the pasotron oscillator having a cavity with strong end reflections.

Also some hysteresis phenomena were studied as well as non-stationary processes outside of the
locking bandwidth. Typical non-stationary processes in the parameter region (designated by ‘c’
in Fig. 4) close to the locking bandwidth but outside of it are illustrated by Fig. 5 where each row

corresponds to slightly different frequencies. These data show that the pasotron spectrum can be
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Fig. 5. Amplitudes, phases and spectra of oscillations.




2) Ion noise is an issue critical for performance of many plasma-assisted sources of
microwaves. For a long time, it is recognized that ion oscillations play a negative role by
widening the spectrum of outgoing radiation; more exactly, such oscillations with typical
frequencies on the order of tens MHz cause appearance of sidebands about the wave
carrier frequency. Therefore there was a feeling that the ion sidebands in pasotrons
should be extremely intense and, hence, these devices should not be suitable for
applications requiring a clean spectrum.

Experimental results (A. G. Shkvarunets et al., ICOPS-04, Baltimore, MD, Conf.
Proc., p. 218), however, had showed that the level of such sidebands in pasotrons can be
on the same order as in vacuum microwave tubes, viz., at -40-50 dBc level. A typical
spectrum of pasotron radiation studied in these experiments is shown in Fig. 6 reproduced
from A. Shkvarunets et al. One can see there ion sidebands at about -50 dBc level located

at about +/-4 MHz on both sides from the carrier.
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Fig. 6. Experimentally measured spectrum of the pasotron.

The theory explaining why the ions play such a small role in the pasotron
radiation spectrum had been developed. This theory is based on a two-dimensional model
of electron motion in the pasotron. Briefly, it was shown that the most important for the
radiation spectrum are the variations of ion density in the space between the plasma gun
and a narrow aperture installed at the entrance to the interaction space. These fluctuations
cause fluctuations in the beam focusing by ions in the interaction space resulting in radial

oscillations of beam electrons there. The radial oscillations, in turn, vary the beam




coupling to slow waves localized in the vicinity of a slow-wave structure elements and,
hence, in the power of electromagnetic radiation by electrons (also electrons can be
intercepted by the walls when the amplitude of radial oscillations of electrons 1s large
enough). A typical example of oscillations in the wave amplitude and a corresponding
spectral intensity of ion noise is shown in Fig. 7 reproduced from Bliokh, Nusinovich et
al (see Ref. 2 in the list of references below). The spectrum shown in Fig. 7b should be
superimposed with the radiation linewidth determined by other sources of noise, which,
in the region of 10-100 kHz off the carrier, falls as inverse frequency due to the flicker
noise and then comes to the floor level at frequencies higher than 10-20 off the carrier.
Such superposition results in the spectrum shown in Fig. 6. The theory also allows us to

determine parameter space where the level of ion sidebands can be reduced.
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Fig. 7. (a) Sample of realization showing oscillations in the wave amplitude due to the

ion noise; (b) corresponding spectrum.




3) Personnel supported

UMD: O. V. Sinitsyn, A. Shkvarunets, G. S. Nusinovich, J. Rodgers, Y. Carmel, T. Antonsen,
Jr. and V. Granatstein

Collaborators: Yu. P. Bliokh-Technion Israel Inst. of Technology, D. Goebel-JPL.
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4) G. Nusinovich, J. Rodgers -advisors to NRL.
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